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Fluency with computer applications has assumed a crucial role in work-related and other day-to-day activities.
While prior experience is known to predict performance in tasks involving computers, the effects of more
stable factors like cognitive abilities remain unclear. Here, we report findings from a controlled study
(N = 88) covering a wide spectrum of commonplace applications, from spreadsheets to video conferencing.
Our main result is that cognitive abilities exert a significant, independent, and broad-based effect on

computer users’ performance. In particular, users with high working memory, executive control, and perceptual
reasoning ability complete tasks more quickly and with greater success while experiencing lower mental load.
Remarkably, these effects are similar to or even larger in magnitude than the effects of prior experience in using
computers and in completing tasks similar to those encountered in our study. However, the effects are varying
and application-specific. We discuss the role that user interface design bears on decreasing ability-related
differences, alongside benefits this could yield for functioning in society.

1. Introduction

This paper sheds new light on a question that is critical for the
information society: does cognitive ability predict one’s success in using
computers, or do differences among individuals merely reflect prior
experience of computer use or differences in sociodemographic factors
such as age? The answer carries profound implications. Computer
applications have become necessary for work, leisure, and even social
relations today. Fluency in using them has been associated, among
other factors, with earnings (Falck et al., 2021) and well-being (Nguyen
et al., 2021). Furthermore, the inability to use computers has been
shown to cause frustration (Hertzum and Hornbak, 2023; Lazar et al.,
2006). At a societal level, individual differences may drive a wedge
between people who are able to fully engage in a technologically
mediated society and those who cannot (Hargittai et al., 2019). It is
therefore unsurprising that governments (e.g., UK, EU, and USA) have
adopted the development of digital skills and equity on their agendas.
However, if cognitive abilities do play a role, it is not enough to train
people to use computers, or provide access; computer interfaces need
to be redesigned to better match cognitive abilities (Wobbrock et al.,
2018).

Higher intelligence has been shown to predict a wide array of posi-
tive life outcomes, such as better job performance (Schmidt and Hunter,
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1998), better mental and somatic health (Deary et al.,, 2010), and
even higher creative achievement (Kim, 2008). However, while large
individual-level differences have been reported in user performance
across computer applications (Boot et al., 2015; Ownby et al., 2008;
Quiroga et al., 2015; Sharit and Czaja, 1999; Wagner et al., 2010;
Westerman et al., 1995), research still has no answer as to whether
they are attributable to relatively stable cognitive abilities. Research in
gaming (Bediou et al., 2018; Quiroga et al., 2015) offers some evidence
of the role of cognitive abilities. In complex games such as League of
Legends, cognitive abilities predict a gamer’s ranking (Kokkinakis et al.,
2017). However, such games are designed to be challenging, whereas
standard computer applications are designed with usability in mind.
User interface designers aim to reduce cognitive load, improve ease
of use, and guarantee access to all (Johnson, 2020). Therefore, results
from the gaming domain might not transfer to general computer use.
Research has given little attention to the relationship between cog-
nitive ability and everyday computer use, despite its crucial role in
contemporary life. While a questionnaire-based study found a link be-
tween self-reported success in computer use and cognitive abilities (Tun
and Lachman, 2010), controlled studies in which the participants ac-
tually carry out tasks with a computer are the gold standard. Direct

E-mail addresses: erik.lintunen@aalto.fi (E. Lintunen), viljami.salmela@helsinki.fi (V. Salmela), petri.jarre@helsinki.fi (P. Jarre),
tuukka.heikkinen@helsinki.fi (T. Heikkinen), markku.kilpelainen@helsinki.fi (M. Kilpeldinen), markus.jokela@helsinki.fi (M. Jokela), antti.oulasvirta@aalto.fi

(A. Oulasvirta).

https://doi.org/10.1016/j.ijhcs.2024.103354

Received 6 February 2024; Received in revised form 29 July 2024; Accepted 9 August 2024

Available online 16 August 2024

1071-5819/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://www.elsevier.com/locate/ijhcs
https://www.elsevier.com/locate/ijhcs
https://osf.io/7b6uv
https://osf.io/7b6uv
https://osf.io/7b6uv
https://osf.io/7b6uv
https://osf.io/7b6uv
https://osf.io/7b6uv
https://osf.io/7b6uv
https://osf.io/7b6uv
https://osf.io/7b6uv
https://osf.io/7b6uv
https://osf.io/7b6uv
https://osf.io/7b6uv
https://osf.io/7b6uv
https://osf.io/7b6uv
https://osf.io/7b6uv
https://osf.io/7b6uv
https://osf.io/7b6uv
https://osf.io/7b6uv
https://osf.io/7b6uv
https://osf.io/7b6uv
mailto:erik.lintunen@aalto.fi
mailto:viljami.salmela@helsinki.fi
mailto:petri.jarre@helsinki.fi
mailto:tuukka.heikkinen@helsinki.fi
mailto:markku.kilpelainen@helsinki.fi
mailto:markus.jokela@helsinki.fi
mailto:antti.oulasvirta@aalto.fi
https://doi.org/10.1016/j.ijhcs.2024.103354
https://doi.org/10.1016/j.ijhcs.2024.103354
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2024.103354&domain=pdf
http://creativecommons.org/licenses/by/4.0/

E. Lintunen et al.

measurement of performance is less reliant on self-perception and emo-
tional factors and may better predict real-world success. However, only
a few such studies exist, all of which have been narrow and focused on
either special applications or specific demographic groups. In a study
carried out in the 1990s, younger age and higher visuo-motor abilities
were correlated with better performance in a banking task (Sharit and
Czaja, 1999). Also, research has identified a link between higher cogni-
tive abilities and better performance in information-seeking tasks (Pak
et al., 2006; Sharit et al., 2008; Westerman et al., 1995), and higher
fluid intelligence has been shown to be associated with faster learning
in an e-mail task among aging adults (Nair et al., 2007). Computer
use is like other skills in that it depends on - and improves with —
practice and familiarity (Nair et al., 2007; Choi et al., 2021; Mitzner
et al., 2019). For gauging the relationship between cognitive abilities
and actual success in using computers, substantive effort is needed in
collecting comprehensive measurements. An ideal study should probe
both measures in controlled conditions. For generalizability, an ideal
study should cover a wide range of everyday tasks, each of which may
draw on particular components of cognitive ability (Kovacs and Con-
way, 2016), as studies of video games attest (Dobrowolski et al., 2015;
Quiroga et al., 2019). Moreover, data on covariates like experience,
fatigue, and demographic factors should be collected.

Here, we study which cognitive factors predict task success, task
completion time, and mental load, across a wide spectrum of popular
computer applications. In our preregistered study,! we employed a
set of 18 common tasks involving computers. The set was designed
to represent not only personal computing tasks but the demands of
functioning in digital society (OECD, 2012; Wilson et al., 2015). It
represents the most comprehensive cross-section of work and leisure
domains investigated thus far, including applications for word process-
ing, banking, information search, maps, e-mail, and other operations.
Examples are given in Fig. 1. The difficulty levels of the tasks were
pre-calibrated in a pilot study targeting average success rates between
25% and 75%. Our prespecified, stratified sample (N = 88) covers wide
age range and key demographic factors.

We hypothesized that general cognitive ability predicts performance
in computer-use tasks, even when prior experience and sociodemo-
graphic variables are accounted for. At its most fundamental level,
cognitive ability can be measured in terms of the general factor of
intelligence (Spearman, 1904), but it is critical to understand the
contribution of more specific cognitive domains (Sachdev et al., 2014).
Specifically, executive functions may have an effect independent from
that of general intelligence (Friedman et al., 2006; Draheim et al.,
2021). These are needed for controlling and inhibiting actions, and
for shifting attention in a task-relevant way. Clues about the effect of
executive functioning can be derived from eye-tracking data, which can
show how an individual explores and homes in on the information at
hand (Liversedge and Findlay, 2000). Secondly, earlier computational
modeling suggests that challenging engagement with computers de-
mands working memory (Card et al., 1980; Kieras and Polson, 1985;
Schraagen et al., 2000). The user must bear in mind intermediate
results and goals, such as what has been typed or what the next subgoal
is. Thirdly, perceptual reasoning and linguistic abilities are important in
graphical user interfaces that rely on visuo-spatial presentation and
label-based information, respectively. Since all the factors depend on
the task at hand, we expected to see task-specific effects of these
different cognitive domains (Kovacs and Conway, 2016). In addition,
we captured both task-specific levels of familiarity and participants’
self-reported efficacy in computer use. This rich dataset allows us to
quantify the contributions both of general cognitive ability and of its
constitutive components across multiple application types, all while
controlling for demographic factors and various aspects of prior experi-
ence, including familiarity with user interfaces, applications, operating
systems, and computers in general, as well as the beliefs that one has
about their capabilities to successfully use computers.

1 See https://osf.io/7b6uv for details.
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2. Methods

The two main goals behind our study design were (i) designing a
set of realistic but challenging everyday tasks performed on a computer
and (ii) obtaining a sample that is large, representative, and diversity-
rich — especially with regard to age, expressed gender, cognitive
ability, and computer skills.

2.1. Ethics

The study protocol adhered to the ethics principles of the Declara-
tion of Helsinki (WMA, 2013) and the guidelines of the Finnish National
Board on Research Integrity, TENK (Kohonen et al., 2019). Informed
consent was obtained in writing from each participant.

2.2. Preregistration

Prior to collection of the data, a preregistration document was
published in an Open Science Foundation (OSF) project repository?.
Only one aspect of the work deviated from the prescribed protocol: the
final sample size was slightly smaller than planned due to difficulties
in recruiting older males.

2.3. Participants

With our sampling process, we aimed at stratification based on
expressed Gender and Age: 58% females (N = 51) and 42% males
(N = 37), with Age distributed uniformly across three ranges: [20,35),
[35,50), and [50,65] (see Appendix D). Among the criteria for recruit-
ment were being a legally competent adult aged 20-65 with normal or
corrected-to-normal vision, proficiency in the Finnish language, having
no diagnosed specific learning difficulties, and being in an employment
relationship at the time of testing. The final sample comprised 88
participants, with an even spread across all expressed genders and
age bands (N = 88, with 2 = 2.54, p = .281). Data collection was
conducted between September 2022 and February 2023. The preregis-
tration materials (link above) contain sample-size estimates and power
analyses.

2.4. Tasks and materials

We aimed to create a diverse and representative set of tasks, fac-
toring in task difficulty and work-load variance. The set of tasks was
designed iteratively to cover everyday computer tasks needed to func-
tion in the society (Wilson et al., 2015). Appendices E and F present a
description of each task along with a gallery of screenshots.

Each task comprised several subtasks, divided into the categories
core (critical for completing the task) and additional (success-related
but not crucial). This allowed us to capture more variance among
high-performing participants. Each task was to be completed within
a three-minute limit. The limit was imposed to be able to test the
participants on a wide range of tasks while keeping the session length
reasonable. The level of challenge was calibrated through a pilot study,
the details of which are reported in our preregistration document (?).
The goal of the calibration was to avoid floor and ceiling effects while
keeping the tasks realistic. Appendices G and H show individual differ-
ences and task differences, respectively. From these figures, we see that
the calibration was successful in ensuring the tasks were realistic given
the time limit.

The experiment used the Windows 10 operating system, with the
exception of the command-line processing task which utilized Windows
Subsystem for Linux running Ubuntu. Before each trial, the operating
system was restored to a pre-trial snapshot using the “System Restore”
feature of Windows. A keyboard and mouse were supplied as input
devices.

2 https://osf.io/7b6uv
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Information search:
The participant is
shown an image of a
painting. The task is
to find its name and
the work that it has
been named after.
(Task 10)

Command-line
processing: The participant
is presented with a
command-line interface and
is given the essential
commands needed in this
task. The task is to find and
navigate to the target
directory, open a text file in
that directory, and identify a
piece of information from
the file on the basis of given
criteria. (Task 15)

,&i |
Remote work: The
participant is presented
with a commonly used
video-conferencing and
group communication
software. The task is to
start a new meeting, given

montiar x P y 1 Y

Navigation: The
_| participant is directed
to an online
navigation service and
is asked to find a
route that fulfils given
criteria. (Task 12)

I

Spreadsheet calculations:

The participant is given a
template for a working hour

list, and the task is to
calculate sums of columns
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working hours into specific
cells. (Task 7)

specific criteria. (Task 17)
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Job listing: The participant
is given details for a job
opening, and the task is to
draft a listing using the
specified online service.
The listing must include all
details given, and it must be
listed in the correct
category. (Task 8)

Fig. 1. Our tasks cover everyday activities carried out on computers that are important for functioning in the society. This figure shows a sample of six tasks from the total of

18 in the study.

2.5. Experimental design

The experiment followed a within-subjects design, in which par-
ticipants were tested one at a time and in two sessions each. During
the first (Session 1), the participant completed computerized tasks and
provided responses to questionnaire items. Task order was randomized
for each participant. In the second session (Session 2), we carried out
the WAIS-IV cognitive ability assessment (see below).

2.6. Procedure

At the beginning of Session 1, the participant was given a concise
verbal overview of the procedure, to guarantee them a clear under-
standing of the study, its objectives, and the tasks involved. Informed
consent was then requested, after which the participant was given the
CUSE questionnaire to complete (described further down). Next, the
participant was guided through a written list of instructions to ensure
standardized task administration. The participant was directed to begin
each task as soon as the instructions appeared on the screen, which is

when the timer was started. The instructions remained visible through-
out the task. No timer was displayed; instead, the participant received
a simple audible alert when 30 s of task time remained. Were the time
to expire mid-task, the participant would be interrupted and asked
to stop. After calibrating the eye-tracker and completing a practice
task for familiarization with the conditions, the participant verbally
confirmed readiness to begin. At this point, the first half of tasks was
presented, with task-specific questionnaires administered after each via
a browser-based interface. The second half of tasks followed after a
two-minute break. Once the 18 computerized tasks were completed,
the participant was asked to respond to the background questionnaire.
Session 1 ended with two computerized cognitive tests (Antisaccade
and Selective Visual Arrays).

Session 2 was held on a separate occasion to minimize the potential
effects of fatigue. The timing, order, and other administrative aspects of
the WAIS subtests were handled in the manner specified in the WAIS-
IV manual (Wechsler, 2008a). There were no scheduled breaks, but the
participant was allowed a short break between the tasks on request.
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2.7. Experimental setup

Both sessions were completed in a soundproofed and light-controlled
testing room. In Session 1, there was one computer monitor for task
instructions (on the left) and one monitor for completing the com-
puterized tasks (at the center of the work space). An eye-tracker
was positioned below the latter screen. The instructor was stationed
unobtrusively outside the participant’s field of view, monitoring the
test screen via a remote connection. In Session 2, the participant and
test administrator sat face-to-face, across a table from each other.

2.7.1. Performance-related metrics

We measured the following task-specific variables: Task Success,
Elapsed Time, Mental Load, and Familiarity. The first of these captures
the proportion of the work successfully completed, and the time vari-
able refers to the time taken to complete the core subtasks of each
task. Task outcomes and questionnaire responses were collected using
Python SQLite (version 3.33.0).

2.7.2. Measurement of cognitive abilities

We estimated general cognitive ability (Full-Scale IQ) via the Wech-
sler Adult Intelligence Scale (WAIS), 4th edition (Wechsler, 2008a). As
part of the core battery, Verbal Comprehension is tested with subtests
Similarities, Vocabulary, Information; Perceptual Reasoning with Block
Design, Matrix Reasoning, Visual Puzzles; Working Memory with Digit
Span, Arithmetic; and Processing Speed with Symbol Search, Coding.
The assessment was administered in person by a master’s student in
psychology, under the supervision of a licensed psychologist. While
most of the subtests were administered verbally, some involved the use
of pictures, pencil markings, and manual manipulation of objects.

To assess EXECUTIVE FUNCTIONS, we employed the accuracy-based An-
tisaccade instrument for capturing the Response Inhibition variable and
Selective Visual Arrays for Attention Control, on the basis of best prac-
tices (Draheim et al., 2021). In the former, participants are tasked to
inhibit distractors by making saccades in the opposite direction (left
or right) of cued stimuli and identify target stimuli before they are
masked; and in the latter, participants must attend to either blue or red
arrays and provide a response indicating whether any change occurred
between two consecutive array configurations (first cue shown briefly).
These tests were completed using E-Prime (version 3.0).

2.7.3. Measurement of eye movements

Eye movements were measured using the GP3 HD Eye Tracker
(150 Hz, accuracy 0.5-1°) and Gazepoint Analysis (version 6.8.0). From
the gaze fixations, we calculated the following statistics: Fixation Count,
Fixation Duration, Off-Screen Fixations, and Explorative Behavior. These
were calculated for all tasks and participants from fixations occurring
during the first 60 s of a given task. Fixation Count represents the
absolute number of fixations, Fixation Duration their mean duration,
Off-Screen Fixations the percentage of them outside of the screen area,
and Explorative Behavior the dispersion of within-screen fixations. After
applying a convolution on each fixation point using a two-dimensional
Gaussian kernel — modeling 1° of the gaze — dispersion was computed
as the count of nonzero pixels in the fixation heatmap divided by
the total number of pixels in the heatmap. Our measure of dispersion
is consistent with standard measures of fixation spread from the eye
tracking literature, e.g., “spatial density”, (see Goldberg and Kotval,
1999; Moacdieh and Sarter, 2015) where the display area is divided
into a grid and the number of cells with at least one fixation is divided
by the total number of cells. However, our method of computing the
proportion after the application of convolutions, and using pixel-sized
cells, allowed us to avoid extreme effects of discretization and achieve
more ‘“smoothness” in the measurements.
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2.7.4. Survey instruments

Questionnaires were administered either repeatedly, after each task,
or only once. The two task-specific variables assessed were (i) subjec-
tive mental work load (Mental Load), measured by means of the NASA
Task Load Index (Hart and Staveland, 1988), pared down to exclude
physical demand, and (ii) task familiarity (Familiarity), measured via
a linear combination of self-evaluated interface and task familiarity,
each rated on a scale of 0 to 100. Task familiarity was measured to
account for task-specific prior knowledge, and the participants were
instructed to include analogues tasks (e.g., an online banking system
with a different bank) in their subjective estimates. The written ques-
tion read: “How often do you perform a comparable task?” Interface
familiarity on the other hand was measured to account for prior ex-
perience in using exactly those systems encountered during the tasks.
The written questions read: “How familiar were you with the software
in Finnish/English [one question for each language]?” Familiarity with
the operating system was measured separately from familiarity with
tasks and interfaces as part of the background questionnaire (described
next).

We measured self-efficacy (CUSE) via the Computer User Self-
efficacy scale (Cassidy and Eachus, 2002); collected demographic de-
tails such as Age, Gender, and Education; and gathered background
information on prior computer use (Exposure), such as the average
number of hours’ use per week, as well as data related to mobile-device
and operating system use, collected to control for prior experience
both in using task-relevant operating systems and in using computing
systems more generally. We measured baseline alertness using the
Toronto Hospital Alertness Test (THAT) (Shapiro et al., 2006), but the
variable was dropped from our analyses after confirming that it was a
non-significant predictor of the dependent variables of interest.

2.8. Data analysis

Before carrying out statistical tests of the effect of cognitive abilities,
we had to ascertain also whether the sample exhibits sufficient variance
for further analyses. Large individual-level differences were indeed
evident for task performance and cognitive abilities. Mean values for
Task Success fell within the range 16.5-91.4% (mean: 64.5, sd: 16.1),
and the range for mean Elapsed Time was 53-176 s (mean: 108.9, sd
24.7). See Appendix G for details. Values for Full-Scale IQ varied from
78 to 140 (mean: 109.5, sd: 13.3). Statistical tests, described below,
delved into the latter variable’s positive correlation with Task Success
and its negative correlation with Elapsed Time and with Mental Load.
They revealed that the 18 tasks varied in their levels of difficulty (see
Appendix H).

Several statistical analyses were made. First, partial correlations
(controlling for age, gender and education) were calculated between
continuous predictor and outcome variables averaged across tasks
(Fig. 2). Second, mean data (over computer tasks) were analyzed with
hierarchical linear regression analysis containing four blocks/models
(Fig. 3). Third, hierarchical linear regression analyses were repeated
separately for each task. Demographic factors were in the first block
and either cognitive variables or experience related variables in the
second block (Fig. 4). Fourth, linear regression analyses were repeated
separately for each task with Full-Scale IQ replaced with the four WAIS
subscales (Fig. 5). Fifth, a linear mixed effect analysis was conducted
with task as a random factor. Different cognitive predictors were used
to find the best model for the data (Table 2). Finally, a linear mixed
effect analysis was conducted adding eye-movement variables to the
model. In the regression analyses, the assumption of no multicollinear-
ity was checked from VIF values (all were below two). The residuals
were normally distributed in all analyses, except in a few cases of task-
specific regression analysis. The data analyses were conducted using
Matlab, Rstudio and jamovi.
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2.9. Data availability

A fully anonymized version of the dataset will be available on the
OSF page of the project. All analysis scripts will be released before
publication.

3. Results

In the following, we report our findings, starting with the general
effect of cognitive abilities and continuing with comparisons against
other factors. We then analyze the effects of cognitive components and
look at how task-specific they are. Finally, we report on differences
among individuals in eye-movements. Throughout, we denote depen-
dent and predictor variables with italics and blocked factors with smaLL
CAPITALS.

3.1. Cognitive abilities predict general performance

Our main finding is that general cognitive ability is a significant
predictor of performance in computer tasks. Fig. 2 crystallizes this: after
adjusting for Age, expressed Gender, and level of Education, Full-Scale
IQ (WAIS 4th Ed.; Wechsler, 2008b) had a significant association with
all three outcomes: Task Success (fraction of the task finished), Elapsed
Time, and Mental Load (NASA-TLX; Hart and Staveland, 1988).

Task Success correlated most strongly with Full-Scale IQ, Perceptual
Reasoning, Response Inhibition, Working Memory, and Computer User Self-
Efficacy (CUSE). Elapsed Time, in turn, correlated negatively with CUSE,
Full-Scale IQ, Exposure (frequency of use and familiarity with computing
platforms), Perceptual Reasoning, and Response Inhibition. Finally, Mental
Load was lower for higher Full-Scale IQ and Attention Control. In sum-
mary, in line with our hypothesis, all three task-level outcomes varied
with general cognitive ability.

3.2. The contribution of cognitive abilities is comparable to that of experi-
ence

To better gauge the independent contributions of abilities vs. ex-
perience vs. demographic factors, we conducted hierarchical linear
regression analyses with four blocks of predictors:

. DEMOGRAPHIC FACTORS (Age, Gender, and Education),

. EXPERIENCE (Exposure, Familiarity, and CUSE),

. coGNITIVE ABILITIES (Full-Scale IQ), and

. EXECUTIVE FUNCTIONS (Response Inhibition and Attention Control).

HWN -

Fig. 3 presents an overview of the regression analysis results. A
detailed breakdown is provided in a table in Appendix A.

Task Success was better predicted by cocniTive ABiLiTies than by ex-
PERIENCE. This result is surprising, as competence in computer use is
traditionally attributed to acquired skill (Ifiguez-Berrozpe and Boeren,
2020; Wicht et al., 2021). Slightly more than 10% of the variance
in Task Success was explained jointly by cocnitive asities (7.9%) and
EXECUTIVE FUNCTIONS (2.8%), whereas experIENCE accounted for 6.9% (see
Table 1). In the full model, we found that Full-Scale IQ (p = .019),
Response Inhibition (p = .030), and CUSE (p = .020) were significant
predictors of higher Task Success (see Appendix A). To sum up, cogni-
tive abilities are at least as good a predictor as prior experience for an
individual’s ability to complete everyday tasks on computers.

Less surprisingly, bEMoGRrAPHIC FACTORS — Age in particular — exhibited
the strongest effect on Task Success. These explained nearly half of
the variance in that outcome (48.6%; Table 1), with Age (p < .001;
see Appendix A) standing out as the sole statistically significant demo-
graphic variable. Younger participants were better at completing the
tasks than older ones were, while the effects of Gender and Education
were non-significant (see Appendix A). We conclude then that, while
demographic factors explained most of the variance, cognitive abilities
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Response Inhibition
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Attention Control

*
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Correlation (adjusted for age, gender and education)

Fig. 2. Correlations of predictive factors with three outcome variables, adjusted for
Age, Gender and Education. Full-Scale IQ and Attention Control correlated significantly
with all three. Error bars indicate standard error. Significance levels: * p < .05, **
p < .01, *** p < .001.

Task Success Elapsed Time Mental Load
*kk
Age V044 )&( 0.38 Aoz
Gender . °
*
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Full Scale IQ : 0.19 v -0.19 .
Response Inhibition : 0.19 °
Attention Control . . °

Fig. 3. An overview of the results from linear regression modeling. Red downward-
pointing triangles denote a statistically significant negative association, while green
upward-pointing triangles indicate a statistically significant positive one. Gray circles
denote non-significant association. The size of the symbols refers to standardized beta
coefficients also printed numerically next to the triangles. Age was a strong predictor of
all three outcomes and Education was a strong predictor of Mental Load. The predictive
effect of cognrrive asimies and Exposure/CUSE on Task Success and Elapsed Time were
similar in magnitude. Significance levels: * p < .05, ** p < .01, *** p < .001.
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Table 1
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A breakdown of results from linear hierarchical regression analysis, addressing each outcome separately for the four hierarchical models.
Addition of variables improved the models almost in all cases (p-values in the last column). The additional variance explained by the
model (4R?) varied from 0.6% to 12.3%. Overall, EXPERIENCE and COGNITION (COGNITIVE ABILITIES combined with ExecuTIVE Funcrions) explained
roughly similar amounts of variance. conition explained 7.0-10.7%, experieNce explained 0.6-12.3%, and DEMOGRAPHIC FACTORS explained

30%-49% of the variance.

Model Comparisons

Adj.Rz2 AIC BIC p AR? F dft  df2 p
Task Success
demographic factors 1 0.49 -124 -109 <.001
+experience 2 0.54 -131 -109 <.001 0.069 4.34 3 80 0.007
+ cognitive abilites 3  0.62 -147 -122 <.001 0.079 18.18 1 79 0.000
+ executive functions 4  0.65 -151 -121 <.001 0.028 347 2 77 0.036
Elapsed Time
demographic factors 1 0.37 780 795 <.001
+experience 2 0.48 766 789 <.001 0.123 6.84 3 80 0.000
+ cognitive abilites 3  0.55 754 779 <.001 0.071 13.84 1 79 0.000
+ executive functions 4  0.57 753 783 <.001 0.023 227 2 77 0.110
Mental Load
demographic factors 1 0.30 684 699 <.001
+experience 2  0.28 690 712 <.001 0.006 0.24 3 80 0.867
+ cognitive abilites 3  0.32 686 71 <.001 0.040 5.13 1 79 0.026
+ executive functions 4  0.33 686 715 <.001 0.030 1.96 2 77 0.148

played a larger role than prior experience in accounting for success in
completing the tasks.

Elapsed Time behaved in a similar way to Task Success: with DE-
MOGRAPHIC FACTORS explaining 36.9% of the variance, expEriENCE 12.3%,
COGNITIVE ABILITIES 7.1%, and EXECUTIVE FUNCTIONING 2.3% (see Table 1).
The statistically significant variables here were Age (p < .001), CUSE
(p = .0063), Exposure (p = .0046), and Full-Scale IQ (p = .036; see
Appendix A). Users who were younger and users who were more experi-
enced completed the tasks more swiftly than older or less experienced
participants. Higher Full-Scale IQ and CUSE predicted faster comple-
tion. Gender, Education, Familiarity, Response Inhibition, and Attention
Control displayed no significant effects on Elapsed Time. In comparison
to Task Success, prior experience had a slightly stronger effect, and
cognitive abilities were a less prominent predictor of the time taken.

Mental Load was most strongly influenced by Age and Education,
with older participants reporting a greater mental burden than younger
ones and with more advanced education being associated with lower
Mental Load values. In fact, these were the only statistically significant
predictors in the full model (p = .008 for Age; p = .032 for a medium
vs. low Education Level and p = .003 for high vs. low; see Appendix A).
Full-Scale IQ was significantly associated with Mental Load in Model
3 (p = .026), but not in Model 4 with Executive Funcrions included.
DemocrapHIC FACTORS explained 30.1% of the variance, while ExpERIENCE
covered only 0.6%, COGNITIVE ABILITIES 4.0%, and EXECUTIVE FUNCTIONING
3.0% (see Table 1). To sum up, cognitive abilities had a proportionately
smaller effect on mental load than on task success or elapsed time.

3.3. Contributions from cognitive components are strong but task-specific

Large differences in the participants’ performance and load were
found across the 18 tasks. Mean Task Success ranged from 30% to
88.3%, mean Elapsed Time was between 56.4 and 157.1 s, and mean
Mental Load lay in the 25.5-59.0% range. To gauge the task-specific
effects of cognitive abilities, we performed a similar regression analysis,
as outlined above, separately for each task. This enabled judging the
relative contributions of cocnition (Full-Scale IQ + EXECUTIVE FUNCTIONS)
and expEREENCE to variability in task performance while controlling for
DEMOGRAPHIC FACTORS.

We found that the explanatory power of cogniTion and EXPERIENCE
varied considerably from task to task. Fig. 4 depicts the contribution
of coanrtion (on the y-axis) and of experiENcE (on the x-axis) to the three
outcomes for each of the 18 tasks. The dashed diagonal divides the tasks
between those better explained by cocnition (above the diagonal) and
those linked more closely to experience (below the diagonal).

Cocnrtion explained as much as 16% of the variance in Task Success
(task 10 in Fig. 4a), while the corresponding figures for ExpERIENCE were
as high as 60% (task 15 in Fig. 4a). Cocnrrion showed the strongest
explanatory role for Task Success with regard to the command-line,
information-search, and navigation tasks (Fig. 4a). CognitioN explained
the most variance in Elapsed Time for the survey, online post service,
installation, information search, and command-line tasks (Fig. 4b), and
in Mental Load, these abilities explained most of the variance seen in the
tasks denoted as navigation, tax form, video conference, and command-
line (Fig. 4c). ExperiEncg, on the other hand, explained most of task
success variance in the word-processing, spreadsheet, and command-
line tasks; for Elapsed Time, it accounted for the majority of the variance
in the last two of these and the file search task; and it explained
Mental Load most strongly in the conditions of the word-processing and
the command-line task. To sum up, the roles of prior experience and
cognitive abilities are strongly dependent on the computerized task at
hand.

Three tasks stood out sharply from the rest in their profile, as Fig. 4
illustrates: The information search task (task 10) was strongly affected
by cocnition, with exeeriENce playing only a minor role. In marked
contrast, the spreadsheet task (7) was the opposite: it was heavily
dependent on experieNce, with barely any contribution from cocnrrion.
Use of the command-line (15) was strongly affected by both (potential
outlier in the upper right corner in Fig. 4a). Other tasks showed weaker
or more mixed contributions from various factors. These findings may
be explained in part by task design: task 15, involving the command-
line interface, was clearly the most difficult of the tasks, requiring
rapidly internalizing the given UNIX commands and understanding that
one can control the computer via text commands without accessing
a graphical user interface. Similarly, handling of the spreadsheet task
clearly benefited from prior exposure to use of formulae. Finally, be-
cause the information-search problem required interpreting a painting
and generating relevant query terms for a search engine, solving it
brought cognitive abilities to the fore.

Having ascertained that cognitive abilities’ role varied greatly be-
tween tasks, we studied whether that role grows with task difficulty.
Such a pattern should be reflected as a higher role of Full-Scale IQ
in tasks with lower completion rates, longer completion times, and
heavier mental load. Interestingly, the effect size (std coefficient) of
Full-Scale IQ did not decrease as a function of Task Success (see Ap-
pendix B). For Elapsed Time and Mental Load, Full-Scale IQ played a
larger part in seemingly easier tasks — i.e., tasks that were completed
quickly and with lower Mental Load. Thus the effect of task difficulty
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Fig. 4. A comparison of the role of cosniTioN (cogNITIVE ABILITIES coupled with ExecuTive Funcrions) and of experieNce (proxied by Exposure, Familiarity, and Computer User Self-Efficacy)
across all tasks for (a) Task Success, (b) Elapsed Time, and (¢) Mental Load. Cocnrrion and experience differed in their effects on Task Success, task-dependently. For some tasks
(e.g., 10 and 12; tasks above diagonal), cocniTioN explained more variance than experience did, while the reverse was true for some other tasks (e.g., 6 and 7; tasks below diagonal).
In a few cases, both or neither were relevant (tasks above zero on both axes, and tasks below zero on both axes, respectively).

on Full-Scale IQ was not found (Task Success) or was the opposite of
what we expected (Elapsed Time and Mental Load).

Since the task difficulty did not play a significant role, we further
investigated the differences between the tasks relative to all cognitive
variables. Tasks differed in their association with the Wechsler Adult
Intelligence Scale (WAIS) subscales, Full-Scale IQ, Response Inhibition
and Attention Control. All associations (standardized beta coefficients
of the regression models) are presented in Fig. 5.

The different subscales independently predicted Task Success in
several tasks (Fig. 5a). For example, Verbal Comprehension predicted
success in information search and command-line tasks, Perceptual Rea-
soning in the installation task, and Working Memory in survey and
spreadsheet tasks. Furthermore, the two variables assessing execu-
tive functions predicted success in online banking, post service, and
command-line tasks. This suggests, that cognitive domains differently
contribute to performance, depending on the task.

Instead of evaluating individual associations between predictors
and outcomes, we can evaluate which kind of cognitive profiles pre-
dicted good performance and low mental load. For example, in the
survey task, high scores in Working Memory, Processing Speed and Verbal
Comprehension subscales predicted high success rate (Fig. 5a), fast
completion time (Fig. 5b), and low mental load (Fig. 5c), respectively.

3.4. Cognitive components have an independent effect across tasks

Finally, to understand the effects coupled with specific tasks, we
conducted linear mixed effects analyses for Task Success with task
as a random effect. We then sought the best model — that is, the
combination of predictor variables that fits the data best (i.e., yielding
the lowest AIC value; see Table 2).

Our results suggest that COGNITIVE ABILITIES, EXECUTIVE FUNCTIONS, and
DEMOGRAPHIC FACTORS all make clear and independent contributions. The
best models incorporated one cognitive variable (either Working Mem-
ory, Full-Scale IQ or Perceptual Reasoning) and had either one (Response
Inhibition) or both variables for executive functions (see Table 2). We
found only small differences between the five best performing models;
however, all of those models were clearly better than the ones relying
on demographic variables alone or on demographic variables combined
with Processing Speed or Verbal Comprehension. In sum, although Age
explains much of the variance in task performance, a significant amount
is left unexplained; to account for the patterns in the data, we need
additional cognitive factors. The top models also proved to be better
than models encompassing all of the WAIS subscales, probably due to
the subscales’ relatively high mutual correlation.
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Fig. 5. Associations (standardized beta coefficient) between (a) Task Success, (b) Elapsed Time, and (c) Mental Load and cognition variables (the WAIS Full-Scale IQ and subscales,
as well as executive functions). Tasks differed markedly in their patterns of association with the various cognitive predictors. Significance levels: * p < .05, ** p < .01, *** p < .001.

Table 2

A comparison of models. All models included pemocrapPHIC FACTORS and EXPERIENCE as covariates. Additional variables
in the model are listed in the first column. Sorting is by AIC; the models performing best (at the top) featured
one variable representing cocnrrive asirties (Full-Scale IQ, Working Memory or Perceptual Reasoning) and one (Response

Inhibition) or both EXecuTIVE FUNCTIONS variables.

Parameters log-Likelihood AIC BIC  AlCrank BICrank
Working Memory +Response Inhibition 12 5.29 13.42 77.83 1 2
Working Memory + Executive Functions 13 5.80 14.41 84.18
Full Scale 1Q + Response Inhibition 12 4.68 14.64 79.04 3 3
Full scale 1Q + Executive Functions 13 5.42 15.16 84.93 4 8
Perceptual Reasoning + Executive Functions 13 5.25 15.51 85.28 5 9
Verbal Comprehension + Perceptual Reasoning + Working
Memory + Processing Speed + Executive Functions 16 7.25 17.50 103.38 6 16
Full Scale 1Q 11 1.63 18.74 77.78 7 1
Executive Functions 12 2.26 19.47 83.88 8 6
Verbal Comprehension + Executive Functions 13 3.08 19.84 89.62 9 11
Verbal Comprehension + Perceptual Reasoning + Working
Memory + Processing Speed 14 3.49 21.03 96.17 10 15
Processing Speed + Executive Functions 13 2.28 2144 91.21 11 13
Working Memory 11 0.08 21.83 80.87 12 4
Perceptual Reasoning 11 -0.04 22.08 81.12 13 5
Processing Speed 11 -4.81 31.62 90.65 14 12
Verbal Comprehension 11 -5.36 32.72 91.76 15 14
Demographics + Experience 10 -7.35 34.69 88.36 16 10

To get some numeric estimate of the effect of the task itself, we
compared the marginal R? values when the task was either a random
effect or a fixed factor in the best model above. Overall the model
explained 47.1% and 45.9% of the variance of Task Success and Elapsed
Time, respectively, while the task explained 24.2% and 28.0% of the
variance.

3.5. Eye- movement patterns are associated with success

To quantify how the participants visually explored and focused on
the tasks’ content, eye movements were recorded while participants
conducted the tasks. A few examples of the fixation heatmaps for the
lowest and highest general cognitive ability participants are shown side
by side in Fig. 6. For all tasks and participants, we calculated the
number of fixations occurring during the first 60 s of a given task,
those fixations’ average duration, the percentage of them falling beyond

the screen area, and the dispersion of within-screen fixations indicating
exploration-oriented behavior. Following this, we augmented the linear
mixed effects model with these variables alongside all of the other
predictor variables (see Appendix C).

Eye-movement analyses revealed a significant association between
average Fixation Duration and Task Success (p = .028): longer fixations
predicted better performance. Also, low fixation counts and a wide
spread of fixation locations showed a significant positive association
with Elapsed Time (p .011 and p .001, respectively). That is,
more exploration during the first minute of a task predicted needing
more time to complete it, and fewer fixations within the first minute
predicted smaller Elapsed Time. Likewise, Fixation Count and Explorative
Behavior were significantly associated with Mental Load (p = .005 and

= .001, respectively). Dispersion pointed to increased load, and the
load experienced declined with the number of fixations. Thus, the eye-
tracking data showed that people who engaged more exploratively with
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High Full-Scale 1Q (top 25%)

T

Fig. 6. Fixation maps for participants with 25% lowest (left) and highest (right) general cognitive ability overlaid on the user interface. Tasks from top to bottom: (a) information
search, (b) spreadsheet calculations, and (c) local file search. The data are averaged over the subsample of participants, including fixations from the first minute of each given

task.

the screen needed more time to complete the given task and perceived
a larger mental burden. In contrast, those participants with fewer gaze
fixations did not need as much time for completing the task and expe-
rienced less mental load. When the eye-movement factors were added
to the model, the amount of variance explained in Mental Load rose by
2%. The corresponding figures for Task Success and Elapsed Time rose
by only 0.6% and 0.5%, respectively. Therefore, while eye movements
were significantly associated with all of our outcome metrics, they seem
to be linked more closely to perceived mental load than to success
levels.

4. Discussion

Our results provide the first clear evidence that cognitive abilities
exert a significant, independent, and broad-based effect over people’s
ability to use computers. While previous experiments have limited
their scope to isolated tasks, self-reporting, or narrow age ranges, our
study design allowed investigating the effects of cognitive abilities
across a wide spectrum of everyday tasks performed on computers
while simultaneously accounting for other known predictors, such as
experience and age. According to the results, cognitive abilities predict
better overall performance and lower mental load.

Remarkably, the effect size of cognitive abilities is comparable to
that of previous experience. In particular, its effect is comparable to
that of general experience with computers and specific experience with
the application domains in our study. This pattern was visible over a
wide range of metrics used in the study to capture the different aspects
of prior experience: interface and task familiarity, active computer use,
exposure to relevant systems and interfaces, and the beliefs that one
has about their capabilities to successfully use computers.

To concretize the importance of cognitive abilities, consider in-
creasing Full-Scale IQ with 15 points — one standard deviation in
the IQ scale. This correlates to an increase of 3.4 percentage points

for Task Success, a 5.2-second reduction in Elapsed Time, and 2.0-
unit lower Mental Load values. These numbers might seem modest;
however, their day-to-day cumulative effect is of practical significance.
This corresponded to the effects of increasing age by about 6.5 years.
Although the role of particular cognitive components varied across the
range of tasks, working memory and executive functioning displayed
the largest effects generally.

In what follows, we first look at what the results suggest about the
cognitive demands of everyday computer applications. We then discuss
implications to understanding of the digital divide.

4.1. Cognitive abilities predict general ability to use computers

Our results attest that strong cognitive abilities serve as a general
predictor of successful computer use. Full-Scale IQ predicted better
success rates, faster task completion, and lower perceived mental load.
This is consistent with earlier work in which cognitive abilities corre-
lated with performance in computerized settings specifically designed
to be challenging, such as gaming (Bediou et al., 2018; Quiroga et al.,
2015), and furthers earlier findings suggesting an ubiquitous effect of
intelligence across domains (Deary et al., 2010; Kim, 2008; Schmidt
and Hunter, 1998).

4.2. Working memory and executive functioning play a special role in
computer use

Beyond demonstrating the role of general intelligence as a signif-
icant predictor of successful computer use, our results spotlight the
importance of working memory and executive functioning in particu-
lar. The model that functioned best, though only by a small margin,
employed Working Memory, instead of Full-Scale IQ, as the construct
for cognitive ability. Accordingly, our research indicates that working
memory capacity in particular explains large amounts of the variabil-
ity observed in success with computer use. Since most computer-use
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tasks require active maintenance of information — for example, about
instructions and goals — the significant role of working memory is
understandable. Full-Scale IQ is an aggregate measurement, and our
tasks’ apparently quite weak dependence on other WAIS subscales,
like Verbal Comprehension and Processing Speed, rendered the combined
score no better at explaining the data.

We found that successful computer use requires executive functions,
too. Many aspects of engaging with computers demand selecting and
tracking one’s goals while also planning and executing actions in the
correct order (Polson et al., 1992). We measured these functions by
means of measurements specifically probing response inhibition and
attention control. Our data show that the role of executive functions
is crucial; adding them to our models always yielded a better fit
to the data. It is noteworthy also that the response-inhibition task
captured the variability in executive functions more fully than the one
centered on attention control. One possible explanation for the strong
link between response inhibition and successful computer use is the
common presence of distractors. We measured response inhibition with
an anti-saccade task, in which participants needed to inhibit saccades
to an irrelevant target. User interfaces present numerous task-irrelevant
visual elements that may distract the user. The ability to avoid these is
advantageous for completing the task. The Response Inhibition variable
directly measures user ability to suppress or inhibit eye movements
toward an irrelevant target.

4.3. Processing speed may have no or a negligible effect in complex com-
pound tasks

It is interesting that, although the tasks were time-limited, Processing
Speed was not a significant predictor of performance. On the surface,
this appears counter-intuitive. One explanation is that performing well
in such computer-based tasks, which take minutes rather than seconds
to complete, depends more on complex cognitive processing than it
does on rather mechanical execution of a simple, repetitive task of
the sort represented by the WAIS Processing Speed subtests. The non-
significance of processing speed in this respect indicates that typical
computer-use tasks draw more on complex cognitive processing than
in settings such as typical mobile games.

4.4. Different predictors for task performance and mental load

In addition to task performance (success and completion time) we
estimated the mental load participants experienced while performing
the tasks. The task-specific results suggest that Verbal Comprehension
and Attention Control were more often associated with mental load
than with success or time. This likely reflects participants ability to
understand instructions and focus on task-relevant information. Failing
in these increased the experienced stress.

Furthermore, in the hierarchical regression analysis (see Appendix A)
the association of Full-Scale IQ with Task Success and Elapsed Time
remained significant after adding EexecuTive runcrions to the analysis.
However, the association of Mental Load with Full-Scale IQ turned to
non-significant after adding executive runcrions. Mental Load, but not
Task Success or Elapsed time, was also strongly associated with the
level of education. Thus, the association of cognition with Mental Load
is less clear than the association of cognition with task performance.
We speculate that experiencing stress while using computers is more
strongly dependent on the ability of understanding how to solve the
task or the ability of trying to solve the task rather than solving the
task incorrectly or slowly.
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4.5. Cognitive abilities may contribute to the digital divide

Our results enrich the current understanding of the digital divide.
While early conceptions of it highlighted the importance of access
to technology, which mirrors socioeconomic inequalities, more recent
work has shifted focus toward the role of acquired skills (Hargittai
et al., 2019; OECD, 2012; Wicht et al., 2021). Moreover, the two are
linked; those with access develop stronger skills and hence benefit
more from computing, with the effects accumulating over the years and
decades.

Our finding suggests that a heretofore unrecognized gap exists: peo-
ple with more advanced cognitive abilities may benefit more fully from
computing than others, with the long-term effects remaining unknown.
While training in computer use can reduce gulfs of this nature, the gap
might not be entirely eliminated in cases of complex technology. The
effect size of cognitive abilities was not directly related to success in
completing the tasks, suggesting that the gap is not solely a result of
task difficulty or complexity. Until we understand the influences, the
gap may remain highly challenging to close. Although age was the most
prominent determinant of performance in our study, it was followed
by cognitive abilities and computer-use experience in virtually equal
measure.

This finding was somewhat unexpected, since we designed our
tasks to be similar to common computer-use operations. At the same
time, the tasks varied considerably in how much performance was
associated with cognitive abilities and how much with experience.
Across all 18 tasks, we did not find any evidence that success with
only difficult activities might be predicted by Full-Scale IQ; importantly,
every one of the tasks was hard enough to allow cognition to explain
performance differences. Hence, future work on digital skills should
include cognitive abilities as a factor of interest.

4.6. User interface design should consider cognitive skills

We conclude that improving user interfaces is critical for attempts
to guarantee that the benefits of computing are spread equally. Making
computers more available or training people to use them, alone, will
not suffice if the user interfaces pose high cognitive demands. Our
main finding suggests that calls for design that takes individual abilities
into account have not been heeded (Wobbrock et al., 2018). Everyday
tasks with computers are not only frustrating (Bessiere et al., 2006;
Hertzum and Hornbaek, 2023), but so difficult that a person’s cognitive
abilities are predictive of their task completion rates. Our more detailed
results suggest what to prioritize in efforts to address this. Specifically,
our models suggest that design should focus on minimizing reliance
on executive functions and working memory. What does this mean in
practice?

Executive functions are critical in recalling information and inhibit-
ing irrelevant responses. To minimize executive load, user interfaces
should rely not on people’s recall but on ability to recognize items (Nor-
man, 2013). Presenting options visually with recognizable graphics
and labels can help tap this opportunity. However, a known trade-
off is that it may tax other cognitive abilities. As more elements are
displayed, more elements compete for attention, and more searching
and navigating will be needed. Thus, to lower executive load, designers
need to, at the same time, minimize the number of elements on display
while making them sufficiently recognizable.

Working memory, on the other hand, entails keeping track of in-
termediate results while performing tasks (Proctor and Vu, 2007). We
saw strong effects of working memory on form-filling tasks and tasks
that require comparing data. To remedy this, instead of users mentally
carrying over results from one step to another, or performing operations
on them, user interfaces could externalize such information (Scaife
and Rogers, 1996). However, externalization can be hard to realize,
as it can make the user interface more cluttered. Interaction tech-
niques could help users by supporting visualization and manipulation
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of intermediate results at will. For example, interaction techniques
could help users more easily transfer information to a form from other
documents. One trade-off here concerns learnability: learning to use
such techniques will take some practice.

Our results suggest that today’s interfaces rely on extensive scanning
and exploration. They present vast amounts of information, of several
types, all at once. This demands attention control from users. User
interfaces should better guide users’ attention, such that information
gets handled smoothly, in appropriate order (Polson et al.,, 1992).
What can be done to address this? Reducing “bloat”, or the number of
unnecessary features, can help (McGrenere and Moore, 2000). Further,
promising results have been obtained by designing task-centric user
interfaces as opposed to feature-centric interfaces (Lafreniere et al.,
2014). In addition, predictive models of visual saliency are emerging
that could be used to design attention-guiding interfaces (Jiang et al.,
2023), although it is an open question how to calibrate them based
on individual differences in cognitive abilities. An orthogonal approach
is to leverage users’ prior knowledge. Exploiting prior knowledge may
help reduce the load on executive functioning. User interfaces that are
“intuitive” are such that users can exploit their existing knowledge
to predict how tasks are completed (Polson et al., 1992). In practice
this means using metaphors, analogs, and conceptual models that are
familiar from everyday life.

We admit that while these are crucial goals toward more accessible
interfaces, these recommendations are not novel. However, our results
may help rethink priorities. While the role of cognitive abilities in
general have been recognized (e.g., Johnson (2020)), our results suggest
the primacy of two components in particular. They call for more work to
understand how to address them in practice while accounting for other
relevant factors like cultural differences.

4.7. Design processes need to include users with diverse cognitive skills

Beyond user interface design, user-centered design processes could
be reconsidered. User groups should cover diverse abilities. Presently,
user interfaces get designed mostly under a “one size fits all” policy,
often with focus on commercially interesting markets: groups who are
likely to adopt new products early. Our results suggest that users with
lower cognitive abilities need to be considered as a target segment.
However, there are complexities in designing for diverse user groups.
An improvement in one group may cause decreases in another. One
promising avenue to tackle this is via stronger focus on learnability.
The focus in design is often on ease-of-use, which may dismiss the
opportunity to support the growth of skills over time. The different
groups’ needs for learning need to be accounted for (Sarkar, 2023).
Spreadsheet computing is a point in case: the task showed an excep-
tionally strong effect of prior experience while the effect of cognitive
abilities was virtually non-existent. Command-line interaction, by con-
trast, required both cognitive abilities and experience. User interface
design could strive to minimize the effect of cognitive abilities by
supporting learning via methods like scaffolding (Soloway et al., 1994).

Evaluation practice should acknowledge that cognitive abilities
have a significant effect in measurements of usability. What is achiev-
able for a user with high cognitive abilities may be out of reach
for some other user. Alas, literature on usability testing is virtually
silent about cognitive abilities as a factor (Himmelsbach et al., 2019).
Therefore, new evaluation practices should be developed that encour-
age testing of products with more diverse samples in order to assure
more equitable usability. However, acquiring estimates of cognitive
abilities is often impractical. Running a test battery may take longer
than a usability study. At the moment this remains an open problem.
However, we warn against the practice of convenience samples, where
colleagues or students are recruited because they are available. This
may inadvertently produce biased estimates of usability.
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4.8. Limitations

We note some limitations of the study design. First, we did not quite
reach our target sample size of N = 100, as we struggled to recruit
older males (see Appendix D). Second, in completing the computerized
tasks, the participants could not choose to use the operating system they
have more experience in. However, most of the tasks were designed to
be independent of the operating system, and the effects of familiarity
with the operating system and task-related interfaces were accounted
for in our analyses. Third, we did not have any baseline computer task,
because we were not able to identify a single baseline task for the
18 experimental tasks we had. Especially in terms of eye-movement
patterns, this could have helped to control for individual differences.
Fourth, although the tasks were ecologically valid and similar to real-
life computer use, the three-minute time limit for each task may have
had an effect on some participants’ performance.

4.9. Conclusion

Our results suggest that contemporary user interfaces are getting
so complex that their design is starting to affect inclusivity. Our data
show that cognitive abilities predict people’s ability to complete chal-
lenging but normal tasks with computers. Users who score higher in
cognitive abilities are faster and more successful. This study is the first
to show that such effects are broad and can be independent of other
factors, specifically the effect of experience. Contrary to conventional
wisdom, being experienced with computers is insufficient to eliminate
this effect. This effect is large enough to have practical significance. We
furthermore found that, of the specialized abilities, working memory
and executive functioning had the largest effects. We conclude that
more research is needed to understand two questions: first, what are
the consequences of these effects on an individual’s ability to function
in the information society and, second, how can we design user inter-
faces to decrease the role of cognitive abilities, in particular executive
functioning and working memory?
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Table 3

Hierarchical linear regression model variables for the three outcomes, and for Models 2-4. Adding a cocnrTIVE ABILITIES Variable (Full-Scale
IQ) to the analyses, under Model 3, reduced the effect exhibited by Education and Age. With the full model (Model 4), adding ExecuTive
FUNCTIONS variables (Response Inhibition and Attention Control) reduced the effect visible from Full-Scale IQ. Under the full model, the
statistically significant predictors were Age, Education, Computer User Self-Efficacy, Full-Scale IQ, and Response Inhibition, depending on
the outcome.

MODEL 2 MODEL 3 MODEL 4
Stand.est SE p Stand.est. SE p Stand.est. SE p
Task Success
Intercept 0.578 0.111 <.001 0177 0.138 0.203 0.124 0.136 0.365
Age -0.619 0.001 <.001 -0.577 0.001 <.001 -0.444 0.001 <.001
Gender 0.066 0.024 0.664 0.066 0.022 0.633 0.008 0.022 0.952
Education, mid 0.429 0.030 0.023 0.243 0.028 0.166 0.287 0.027 0.094
Education, high 0.242 0.029 0.184 0.038 0.027 0.825 0.093 0.027 0.578
Exposure 0.107 0.001 0.165 0.137 0.001 0.053 0.129 0.001 0.062
Familiarity 0.070 0.001 0.428 0.091 0.001 0.259 0.119 0.001 0.131
Computer User Self-Efficacy 0.195 0.001 0.018 0.185 0.001 0.014 0.170 0.001 0.020

Full Scale IQ 0.297 0.001 0.000 0.189 0.001 0.019

Response Inhibition 0.193 0.069 0.030

Attention Control 0.089 0.020 0.251
Elapsed Time

Intercept 131.121 18.095 <.001 189.784 23.041 <.001 196.898 23.060 <.001

Age 0.540 0.164 <.001 0.500 0.154 <.001 0.381 0.186 0.000

Gender 0.112 3.977 0.489 0.112 3.692 0.455 0.163 3.689 0.278

Education, mid -0.283 4.875 0.156 -0.106 4.676 0.579 -0.145 4.625 0.443

Education, high -0.222 4.748 0.252 -0.028 4592 0.881 -0.076 4.571 0.681

Exposure -0.198 0.156 0.017 -0.226 0.145 0.004 -0.220 0.144 0.005

Familiarity -0.035 0.165 0.706 -0.055 0.154 0.528 -0.081 0.153 0.353

Computer User Self-Efficacy -0.247 0.115 0.005 -0.237 0.107 0.004 -0.224 0.106 0.006

Full Scale IQ -0.283 0.141 0.000 -0.186 0.162 0.036

Response Inhibition -0.169 11.788 0.086

Attention Control -0.085 3.323 0.319
Mental Load

Intercept 35.526 11.713  0.003 59.8283 15666  0.000 60.441 15.739  0.000

Age 0453 0.106 0.000 0.423 0.105 0.000 0.325 0.127 0.008

Gender -0.012 2575 0.951 -0.012 2511 0.950 0.012 2518 0.947

Education, mid -0.616 3.156 0.010 -0.483 3.179 0.042 -0.508 3.157 0.032

Education, high -0.847 3.073 0.000 -0.701 3.122 0.003 -0.711 3.120 0.003

Exposure -0.007 0.101 0.945 -0.028 0.099 0.765 -0.038 0.098 0.686

Familiarity -0.031 0.107 0.778 -0.046 0.105 0.670 -0.065 0.104 0.543

Computer User Self-Efficacy -0.064 0.075 0.528 -0.057 0.073 0.567 -0.034 0.073 0.730

Full Scale IQ -0.212 0.096 0.026 -0.135 0.111 0.218
Response Inhibition -0.033 8.046 0.787
Attention Control -0.202 2.268 0.059

Appendix A. Regression model results
See Table 3.

Appendix B. Standardized coefficient of full-scale IQ
See Fig. 7.

Appendix C. Fixation statistics
See Table 4.

Appendix D. Participant sample

Expressed Gender Age N
Female [20, 35) 17
Female [35,50) 17
Female [50, 65] 17
Male [20, 35) 17
Male [35,50) 13
Male [50, 65] 7

Other [20, 65] 0

Appendix E. Task descriptions
See Table 5.
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Table 4

Statistics from a linear mixed effects analysis, where eye-movement variables (Number of Fixations, Duration of Fixations, Out-of-screen
Fixations, and Dispersion of Fixations) were added to the model. Longer mean duration of fixations predicted better Task Success;
lower number of fixations predicted lower Elapsed Time (faster completion) and lower Mental Load in completing the task; and higher
dispersion of fixations predicted higher Elapsed Time (slower completion) and higher Mental Load.

Table 5

Task Success Elapsed Time Mental Load

Estimate SE df P Estimate SE df P Estimate SE df P
Intercept  0.639 0.034 19.900 <.001 107.656 6.124 20.000 <.001 39.190 2118 33.400 <.001
Education, low  0.057 0.027 77.300 0.035 -2.668 4709 77.400 0.573 -6.924 3.245 78.700 0.036
Education, high  0.039 0.027 79.600 0.151 -0.245 4732 79.700 0.959 -10.108 3.243 79.500 0.003
Age -0.005 0.001 82.400 <.001 0.637 0.180 82.500 <.001 0.274 0.123 80.700 0.029
Exposure  0.002 0.001 77.600 0.079 -0.452 0.159 77.800 0.006 0.085 0.110 78.800 0439

Computer User Self-Efficacy  0.001 0.001 80.100 0.183 -0.148 0.102 80.200 0.148 0.047 0.070 79.600 05
Familiarity  0.003 0.000 1392700 <.001 -0.463 0.045 1402900 <.001 -0.256 0.018 1419100 <.001
Verbal Comprehension  0.001 0.001 79.000 0418 -0.076 0.146 79.100 0.602 -0.031 0.100 79.500 0.757
Perceptual Reasoning  0.003 0.001 78.000 0.013 -0.262 0.173 78.200 0.134 -0.116 0.119 79.000 0.334
Working Memory  0.002 0.001 77.200 0.035 -0.181 0.161 77.400 0.266 -0.037 0111 78.600 0.737
Processing Speed  0.001 0.001 77.300 0.325 0.001 0.148 77.500 0.997 -0.003 0.102 78.700 0.979
Response Inhibition  0.161 0.069 78.200 0.022 -11.407 12125 78.300 035 -0.390 8335 79.100 0.963
Attention Control  0.012 0.021 77.300 0.546 -3.864 3.620 77.500 0.289 -3.173 2484 78.700 0.207
Number of fixations  0.000 0.000 1183.400 0.504 -0.071 0.028 1212.000 0.011 -0.031 0.011 1412.800 0.005
Duration of fixations  0.363 0.165 762.600 0.028 -13.799 28.508 801.800 0.628 -8.354 11928 1392.900 0484
Out-of-screen fixations  0.046 0171 1294100  0.787 -7.879 29445 1315800  0.789 13.748 11656 1432100 0.238
Dispersion of fixations  -0.076 0.061 1399.600 0.212 34.574 10455  1410.800 <.001 21.161 4.041 1319.600 <.001

Task descriptions.

1

Online banking

The participant is asked to use an online banking service with the given log-in details, then asked to
find a specific bank statement and to download this onto the test computer.

Survey creation

The participant is logged in to an online service for creating surveys. The task is to create a
questionnaire, given questions and answers. The participants is then asked to generate a shareable
link for their questionnaire.

File management

Given a set of files, the participant is asked to create a folder and to differentiate PDF files from
others before compressing the folder and uploading the compressed file into the cloud repository.

Online postal service

The participant is asked to log in to an online postal service, given log-in details, then asked to create
a new bill with given details, mark the bill paid, and finally archive it.

A software install

The participant is asked to find the installer file for named software. After downloading and installing
the correct version, the user is asked to configure settings.

Word-processing

The task is to “insert” page numbering for an empty multi-page text document. The participant is
given specific instructions for formatting.

Spreadsheet calculations

The participant is given a template for a working hour list, and the task is to calculate sums of
columns and percentages of total working hours into specific cells.

A job listing

The participant is given details for a job opening, and the task is to draft a listing using the specified
online service. The listing must include all details given, and it must be listed in the correct category.

Home insurance

The participant is given details of a home that has been rented gets presented with a website that
offers home insurance. The task is to find a quote calculator and calculate an estimated annual price
for the property. The participant is then asked to generate a PDF file of the basket and to download
this onto the test computer.

10

Information search

The participant is shown an image of a painting. The task is to find its name and the work that it
has been named after.

11

Benefit calculators

The participant is directed to the website of the Social Insurance Institution of Finland. For the given
details, the task is to find the appropriate calculator and get it to supply specific details about the
relevant benefit.

12

Navigation

The participant is directed to an online navigation service and is asked to find a route that fulfills
given criteria.

13

An information manager

The participant is presented with information on a task in need of completion. This task is to be
added to personal information manager software. The task is then marked as completed, and a status
report is sent to a given e-mail address.

14

A tax form

The participant is given the name of a tax form of interest. The task is to find the form, a PDF
version of it, and fill in all instances of a named field appearing in the form.

15

Command-line processing

The participant is presented with a command-line interface and is given the essential commands
needed in this task. The task is to find and navigate to the target directory, open a text file in that
directory, and identify a piece of information from the file on the basis of given criteria.

16

CAPTCHAs

The participant is given a set of nine CAPTCHA puzzles. The task is to complete all of these in the
given time.

17

Remote work

The participant is presented with a commonly used video-conferencing and group communication
software. The task is to start a new meeting, given specific criteria.

18

Local file search

The participant is given the name of a file to be found from the test computer, given some hints to
its location.

14
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Appendix F. Task screenshots
See Fig. 8.
Appendix G. Individual differences in task performance
See Fig. 9.
Appendix H. Task differences

See Fig. 10.

= Nimeton lomake
°

@ OneDrive

®i0 010 wioil ol

O e A o i o i
3 e -

Verokorttihakemus ja
ennakkoverohakemus (5010)

Fig. 8. Screenshots of the 18 tasks. From top to bottom, left to right: in the order given in Appendix E.
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